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Figure 2. Measurements in CHCl3. UV and CD curves of tetrahydrodiol 
6 (—) and its dma-dibenzoate 7 (—). Only regions above 270 nm are 
shown due to difficulty in measurements. The absorption centered at 281 
and 331 nm are due to the longitudinal and transverse transitions of the 
pyrene moiety, respectively. 

indicated a diastereoisomeric relationship.13 The later eluting 
product (designated peak 3 in ref 1) and the in vivo product 
were identical. We have now separately converted 2a and 2b 
into the guanosine adducts 4 via oxidation to 3, reaction with 
poly(G), and hydrolysis, and found that the product derived 
from 2a corresponded to the in vivo peak 3 material. Hence the 
absolute configuration of the in vivo product is represented by 
4. 

A second in vivo product was found which corresponded to 
the minor component (designated peak 2 in ref 1) resulting 
from hydrolysis of the racemic 3-modified poly(G).1 Recent 
HPLC studies18 indicate that this in vivo product is derived 
from the same enantiomer of 3 and that it is probably the 
corresponding 9,10-cis addition product.4'19 

The formation of adducts from only one enantiomer of 3 in 
vivo1 is consistent with recent evidence that only 3 derived from 
2a is formed during the in vitro microsomal oxidation of I.20 

Nucleic acids themselves are highly asymmetric and hence, 
the absolute stereochemistry of these in vivo adducts is inti­
mately related to their interaction with and modification of 
nucleic acid structure.21 
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The Stereochemistry of Sterols at C-20 and Its 
Biosynthetic Implications 

Sir: 

While the three-dimensional character of the dominant 
sterols' in biological systems has been well established in terms 
of absolute configurations at the various asymmetric centers 
in the nucleus2 and more recently at C-24, 3 9 conformational 
isomerism of the side chain in all sterols10 and the configuration 
at C-20 in most of them have remained enigmatic. Rotation 
about the 17(20)-bond is especially interesting, because in the 
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different isomers the bulky six carbon atoms comprising C-22 
through C-27 (and C-28 and C-29 as the case may be) are 
placed in very different locations relative to the tetracyclic 
nucleus. 

Examination of molecular models reveals that the side chain 
should be the most stable with C-22 either to the left (cis ori­
ented with respect to C-13) (3a) or to the right (3b) in the 
conventional view of the molecule. A choice in favor of the 
right-handed conformation can be made in the following way. 
In animal cholesterol for which the configuration at C-20 is 
known2 the H atom at C-20 will project pseudo-axially toward 
and C-21 and C-22 pseudo-equatorially away from the ob­
server when C-22 is to the right in a skew conformation (3b) 
about the 17(20)-bond. In the left-handed conformation 
(eclipsed, 3a), C-21 and C-22 will lie pseudo-equatorially 
toward the observer and therefore closer to ring D. Steric 
compression between C-21 and C-22 and the ring should 
destabilize this conformer relative to the right-handed one. This 
has recently been demonstrated by the hydroboration of 
(Z)-17(20)-dehydrocholesterol.n The left-handed conformer 
of 20a-hydroxycholesterol must have arisen, but it was the 
right-handed conformer found as the product. We have now 
confirmed the theoretical analysis in a different way, viz., by 
spectral studies of cholesterol and its epimer, 20-isocholesterol. 
In the epimer (with reverse three-dimensional characteristics 
at C-20) it should be the left-handed conformer (2b) which is 
skew and which possesses the least steric compression, i.e., an 
opposite conformational preference compared to cholesterol, 
20a-hydroxycholesterol, and other sterols of the same con­
figuration. This was observed experimentally. 

(£')-20(22)-Dehydrocholesterol12 (1), used as the 3,5-cy-
clocholest-6/3-yl methyl ether to protect the A5-bond, was re­
duced with hydrogen and platinum oxide in dioxane containing 
a small amount of acetic acid.13 The product at this and sub­
sequent stages of isolation on examination by glc was a 1:1 
mixture of the C-20 epimers.13 Retro-3,5-cyclosteroid rear­
rangement (zinc acetate and acetic acid), hydrolysis of the 
acetates, and separation of the resulting epimeric sterols on a 
column of AI2O3 deactivated with 10% of water gave choles­
terol (3b): mp 146-147 0C; 1H NMR S 0.69 (s, C-18 protons), 
1.02 (s, C-19 protons), 0.88 (d, J = 6-7 Hz, C-26 and C-27 
protons), and 0.91 (d, J = 6-7 Hz, C-21 protons); and 20-
isocholesterol (2b): mp 153-154 0C; RRT 0.91; 1H NMR 8 
0.69 (s, C-18 protons), 1.03 (s, C-19 protons), 0.88 (d, J = 6-7 
Hz, C-26 and C-27 protons), and 0.81 (d, J = 6-7 Hz, C-21 
protons). 

The existence of opposite conformational preferences in the 
two tetrahedral products (3b and 2b) is demonstrated by the 
upfield shift (0.10 ppm) in the signal for C-21 for 20-isocho­
lesterol compared to cholesterol. Such a shift is predicted from 
an analysis of the spectra of, among others, (E)- and (Z)-
17(20)-dehydrocholesterol in which C-22 is fixed rigidly to the 
right and left, respectively, by virtue of the 17(20)-double 
bond.'4 The formation of both cholesterol and 20-isocholesterol 
by reduction of the A20(22)-sterol also demonstrates the pres­
ence of the two rotational isomers (la and lb) in the starting 
material. Since the ratio of the products was 1:1 the positioning 
of the R group (in 1) to the right or left can have had no ap­
preciable effect on the energies of the respective transition 
states. This implies by analogy that the placing of R on the 
right or left in the final sterol (and, ignoring the double bond, 
also in the initial A20(22)-sterol) has no appreciable effect in 
terms of the bulk of the R group. The ratio of the reduction 
products therefore further confirms that the conformational 
preferences in the epimeric sterols must be determined by the 
configuration at C-20. 

Since inversion of the configuration at C-20 necessarily 
results in conformational inversion which is accompanied by 
a predictable change14 in the signal for C-21,1H NMR spec-
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troscopy becomes a method for determination of the configu­
ration at C-20. Consequently, we have examined a large 
number of samples of cholesterol and its 24-methyl- and 24-
ethyl derivatives as well as derivatives of ergosterol and stig-
masterol derived from algae, fungi, tracheophytes, and ani­
mals.15 In every case for the A5-sterols the signal from C-21 
was at 0.91-0.93 ppm. This is the same as found for cholesterol, 
and it is 0.10 downfield from the position found in 20-isocho­
lesterol. Similarly, 24/3-methylcholesterol derived synthetically 
from ergosterol exhibits a doublet at 0.92 ppm. The configu­
ration at C:20 must therefore be the same (2Oa-H) in all 
cases. 

The results are consistent with the involvement of a pre­
viously suggested16 intermediate (5a) in the cyclization of 
squalene oxide (4) in which a group probably from the cyclase 
has attacked the front of C-20 (the opposite side of the 
A17<20>-double bond from the side attacked by C-13) thus 
permitting time for rotation (5a to 5b) to occur about the 
17(20)-bond prior to migration of the 17/3-H-atom to C-20 (5b 
to 3b). Examination of molecular models reveals an explana­
tion for this phenomenon. At the stage in which the protosterol 
is complexed with the enzyme (or other attacking species) the 
least stable rotamer about the 17(20)-bond, and the one nec­
essarily resulting from cyclization due to the trans-oriented 
double bond in squalene oxide (4), is the one in which C-22 lies 
to the left with the 17/3-H-atom and the substituent (enzyme, 
etc.) opposed (pseudo-l,2-diaxial) in an eclipsed conformation 
(5a). A large substituent such as the enzyme might also ex-
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perience steric compression from the 14/3-methyl group. It is 
to relieve the steric strain thereby induced that rotation of 180° 
proceeds yielding a skew conformer (5b). This right-handed 
conformer (5b) then permits completion of the reaction by 
elimination of the substituent at C-20 in a trans-reaction. The 
elimination and consequent migration of the 17/3-H-atom to 
C-20 in turn invert C-20 which as a result of simultaneous 
inversion at C-17 produces the stable skew conformer (3b) of 
the completed sterol.17 The presumed facility of the confor­
mational change from 5a to 5b is in keeping with the work of 
van Tamelen and co-workers18 who have found that the overall 
cyclization is not particularly sensitive to the nature of R which 
can vary between H and the full structure of the natural side 
chain. 
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The Isolation and Structure of Aplysistatin1 

Sir: 

The toxic effects of sea hare (Mollusca phylum, Aplysiidae 
family) constituents were well known to various ancient peo­
ples, such as those of the Mediterranean basin.2 By 150 A.D. 
such marine animal biosynthetic products had already found 
application in certain medical treatments.3 This potentially 
useful source of medicinal agents seems to have received little 
attention and has so far nearly eluded modern chemical and 
biological evaluation. We now wish to report4 that a 2-propanol 
extract of the South Pacific Ocean (Australia) sea hare Ap-
lysia angasi was found to significantly inhibit (T/C 175 at 400 
mg/kg) progression of the National Cancer Institute's murine 
lymphocytic leukemia P-388 and growth of the new P-388 in 
vitro cell line. The latter in vitro technique was utilized for 
guiding isolation procedures.5 

Detailed chromatographic (prepacked silica gel columns6) 
separation of a chloroform-soluble fraction prepared from the 
2-propanol extract gave in a series of fractions eluted by 9:1 
ligroin-ethyl acetate a cytotoxic (P-388, ED50 2.7 ng/m\ and 
KB ED50 2.4 Mg/ml) component designated aplysistatin (1, 
mp 173-175 0C) with empirical formula C5H2IO3Br (M+ 

330); ORD in methanol [a]25
589 -375°, [a]25

278 +21 500, and 
[a]25

27o +17 500; CD in methanol [0]nm + 8580 (259); IR 
(KBr) 1765, 1676,1230,1205, 1010, 1000,628, and 590 cm"1; 
1H NMR (CDCl3) 5 0.96 (s, 3 H, methyl), 1.16 (s, 3 H, 
methyl), 1.28 (s, 3 H, methyl), 1.6-2.4 (m, 5 H, methylene), 
2.58 (m, 2 H), 3.9 (m, 2 H), 4.52 (t, J = 8.5 Hz, 1 H), 5.17 (m, 
1 H), and 7.00 (m, 1 H). 

Single crystals of aplysistatin of suitable size for data col­
lection were obtained from acetone-hexane. On the basis of 
the observed Laue symmetry and systematic extinctions, the 
crystal was assigned the orthorhombic space group P2\ 2\ 2\\ 
with a = 9.982 (9), b = 7.182 (2), c = 20.586 (9) A; Z = 4; 
Pcaicd = 1-482 g/cm3 for Ci2H2IO3Br, pobsd = 1-469 g/cm3. 
Diffraction intensities were measured in the 6-28 scan mode 
using graphite monochromated Mo Ka radiation on a Syntex 
Pl autodiffractometer; of the 2107 reflections examined (28 
< 55°) a total of 1967 unique reflections were retained with 
IF0 I > 0. Corrections were made for the absorption of Mo Ka 
radiation,7 and there was no observable extinction in the 
crystal. 

The structure was solved by standard heavy atom methods.8 

A comparison was made of large block least-squares refine­
ments (172 independent variables in two blocks) of the two 
structural configurations with anisotropic thermal parameters 
and fixed hydrogen positions using the anomalous scattering 
factors for Br, O, and C.9 The standard residuals at conver­
gence were R = 0.1018 and R = 0.0945, respectively, for the 
two models and the weighted residuals Rw = (2Zw(\Fo\ — 
|^c | ) 2 /Ew|^o| 2) l / 2 of 0.0719 and 0.0649, respectively, were 
obtained for w = l/or2-

The perspective view shown in Figure 1 displays all the es­
sential conformational and configurational features of the 
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